Welcome to my webpage!

I am a junior **economist** at the Structural Policy Analysis Division of the **OECD Economics Department**.

I recently graduated from Brown University with a PhD in Economics. My dissertation research deals with empirical and theoretical questions at the intersection of **demography** and **economic inequality**. My broader research interests are in **economic growth**, **macroeconomics**, **labor economics**, and **political economy**. You can find more information in my CV and in the research sections of this website.

Feel free to reach out at matthias.schief@gmail.com.

* The views expressed in this website are solely those of the author and should not be interpreted as reflecting those of the Organisation for Economic Co-operation and Development.*

**Population Aging, Cohort Replacement, and the Evolution of Income Inequality in the United States** with Vesa-Matti Heikkuri [most recent version]

This paper examines the impact of demographic change on household income inequality in the United States, both historically and prospectively. We emphasize the distinct roles of population aging and cohort replacement and develop a methodology to study their joint compositional effect on income inequality. In the process, we also develop a novel methodology to aggregate subgroup Gini coefficients into a population-level Gini coefficient based on the principle of maximum entropy. We document that cohorts born later in the 20th century embody higher levels of income inequality compared to earlier-born cohorts, and we argue that most of the increase in inequality over the past two decades can be accounted for by demographic change. Moreover, we predict that demographic change over the next two decades will lead to further increase of the Gini coefficient by one to six percentage points.

**Subgroup Decomposition of the Gini Coefficient: A New Solution to an Old Problem** with Vesa-Matti Heikkuri [most recent version] *Revise and Resubmit* at *Econometrica*

We study inequality decomposition by population subgroups. We define properties of a satisfactory decomposition and derive the implied decomposition formulas for well-known inequality indices. We find that the Gini coefficient, the generalized entropy indices, and the Foster-Shneyerov indices all admit satisfactory decomposition formulas derived from a common set of axioms. While our axiomatic approach recovers the established decomposition formulas for the generalized entropy and the Foster-Shneyerov indices, it leads us to a novel decomposition formula for the Gini coefficient. The decomposition of the Gini coefficient is unique given our axioms, easy to compute, and has both a geometric and an arithmetic interpretation.

**The Mechanisms underlying Affective Polarization. An Experimental Study**with Devesh Rustagi**Institutional Changes and the Allocation of Talent. Macroeconomic Effects of a School Reform in Finland**with Vesa-Matti Heikkuri and Cosimo Petracchi**Tight Bounds for the Gini Coefficient of Composite Populations**with Vesa-Matti Heikkuri**Success-biased Cultural Evolution in a Panel of Countries****Optimal Transport and the Measurement of Inequality**with Vesa-Matti Heikkuri**Isolating a Culture of Son Preference among Armenian, Georgian, and Azeri Parents in Soviet-era Russia**with Sonja Vogt, Elena Churilova, and Charles Efferson

**Investigating the Structure of Son Bias in Armenia With Novel Measures of Individual Preferences.** Matthias Schief, Sonja Vogt, and Charles Efferson. *Demography.* 2021; 58 (5):1737-1764. [doi]